skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hosseini, Mitra Bokaei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Mobile applications (apps) provide users valuable benefits at the risk of exposing users to privacy harms. Improving privacy in mobile apps faces several challenges, in particular, that many apps are developed by low resourced software development teams, such as end-user programmers or in startups. In addition, privacy risks are primarily known to users, which can make it difficult for developers to prioritize privacy for sensitive data. In this paper, we introduce a novel, lightweight method that allows app developers to elicit scenarios and privacy risk scores from users directly using only an app screenshot. The technique relies on named entity recognition (NER) to identify information types in user-authored scenarios, which are then fed in real-time to a privacy risk survey that users complete. The best-performing NER model predicts information types with a weighted average precision of 0.70 and recall of 0.72, after post-processing to remove false positives. The model was trained on a labeled 300-scenario corpus, and evaluated in an end-to-end evaluation using an additional 203 scenarios yielding 2,338 user-provided privacy risk scores. Finally, we discuss how developers can use the risk scores to prioritize, select and apply privacy design strategies in the context of four user-authored scenarios. 
    more » « less
  2. null (Ed.)
  3. The Android mobile platform supports billions of devices across more than 190 countries around the world. This popularity coupled with user data collection by Android apps has made privacy protection a well-known challenge in the Android ecosystem. In practice, app producers provide privacy policies disclosing what information is collected and processed by the app. However, it is difficult to trace such claims to the corresponding app code to verify whether the implementation is consistent with the policy. Existing approaches for privacy policy alignment focus on information directly accessed through the Android platform (e.g., location and device ID), but are unable to handle user input, a major source of private information. In this paper, we propose a novel approach that automatically detects privacy leaks of user-entered data for a given Android app and determines whether such leakage may violate the app's privacy policy claims. For evaluation, we applied our approach to 120 popular apps from three privacy-relevant app categories: finance, health, and dating. The results show that our approach was able to detect 21 strong violations and 18 weak violations from the studied apps. 
    more » « less